Regression (Example:Poke)
Step1:Model
- y=b+w*x$_cp$ (weight/bias)
 - y=b+$\Sigma$$w_i$$x_i$ (各种不同的属性) (feature)
 
Step2:Goodness of Function
Training Data => ($x^n$,$y^n$)
Loss function (func) :judge how bad the func is
L( f ) = L( w, b ) = $\Sigma$( ( $y^n$ - ( b + w*$x^n$ ) )$^2$
计算估测误差值之和

Then Pick the Best Function
f$^*$ = arg min L(f) =>w$^*$,b$^*$
Step3:Gradient Descent

One parameter
- Step Size : -$\eta$$\frac{dL}{dW}$|w=w$^0$
 - dL : 陡峭程度
 - $\eta$ : Learning Rate (学习速度)
 - …… Need Many Iteration
 - Final => Local optimal
 
Two parameters
- -$\eta$$\frac{dL}{dW}$|w=w$^0$ -$\eta$$\frac{dL}{db}$|b=b$^0$
 - w$^0$,b$^0$ => w$^1$,b$^1$

 
Result
- Error : $\Sigma$e$^n$ (e = y - $\hat{y}$ )
 - 一个x是一条直线,预测精度不够,需要一个更复杂的model

 
Another Model
考虑二次项的误差

考虑三次项的误差 (已经没有太大差别)

考虑四次项 (误差反而变得更大了)

考虑五次项 (误差爆炸,寄)
Redesign the Model (Hidden Factors)
以种族进行分类取得多组值,合并为一个Linear model

加入所有已知Factor
反而Overfitting(过拟合),误差值很大

Regularization
- L( f ) = $\Sigma$( ( $y^n$ - ( b + w*$x^n$ ) )$^2$ + $\lambda$$\Sigma$(w$_i$)$^2$
 - 找到w的参数越小越好